st-Orientations with Few Transitive Edges

نویسندگان

چکیده

The problem of orienting the edges an undirected graph such that resulting digraph is acyclic and has a single source s sink t long tradition in theory central to many drawing algorithms. Such orientation called st-orientation. We address computing st-orientations graphs with minimum number transitive edges. prove NP-hard general case. For planar we describe ILP model fast practice. experimentally show optimum solutions dramatically reduce respect unconstrained computed via classical st-numbering Moreover, focusing on popular algorithms apply st-orientation as preliminary step, reducing leads drawings are much more compact.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On transitive orientations with restricted covering graphs

We consider the problem of finding a transitive orientation of a comparability graph, such that the edge set of its covering graph contains a given subset of edges. We propose a solution which employs the classical technique of modular tree decomposition. The method leads to a polynomial time algorithm to construct such an orientation or report that it does not exist. © 2006 Elsevier B.V. All r...

متن کامل

Constructing Graded Semi-transitive Orientations

CONSTRUCTING GRADED SEMI-TRANSITIVE ORIENTATIONS

متن کامل

Coloring uniform hypergraphs with few edges

A hypergraph is b-simple if no two distinct edges share more than b vertices. Let m(r, t, g) denote the minimum number of edges in an r-uniform non-t-colorable hypergraph of girth at least g. Erdős and Lovász proved that m(r, t, 3) ≥ t 2(r−2) 16r(r − 1)2 and m(r, t, g) ≤ 4 · 20g−1r3g−5t(g−1)(r+1). A result of Szabó improves the lower bound by a factor of r2− for sufficiently large r. We improve...

متن کامل

Colour-critical graphs with few edges

A graph G is called k-critical if G is k-chromatic but every proper subgraph of G has chromatic number at most k 1. In this paper the following result is proved. If G is a k-critical graph (k>~4) on n vertices, then 21E(G)I>(k 1)n ÷ ((k 3)/(k 2 3))n + k 4 where n>~k + 2 and n ~ 2 k 1. This improves earlier bounds established by Dirac (1957) and Gallai (1963). (~) 1998 Elsevier Science B.V. All ...

متن کامل

Listing All st-Orientations

See examples in Fig. 1(b). Many graph algorithms use an st-orientation. For instance, graph drawing algorithms [3], [4], [17], [19], [22], routing algorithms [1], [13] and partitioning algorithms [14]. Given a biconnected graph G and its two vertices s and t, one can find an st-orientation of G in O(m + n) time [5], [6], [22]. Note that if G is not biconnected then G may have no st-orientation....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Lecture Notes in Computer Science

سال: 2023

ISSN: ['1611-3349', '0302-9743']

DOI: https://doi.org/10.1007/978-3-031-22203-0_15